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Abstract-The paper presents an algorithm for the derivation of damage tensors emphasizing its
relationship with the actual and approximate crack density distributions. The proposed model is
illustrated using scalar, second and fourth order continuous tensor approximations of some typical
two and three dimensional crack distributions. It is also shown that the occurrence of regions with
negative crack density (anticrack regions) is in many cases a common and as yet unexplored feature
of the approximate solutions.

I. INTRODUCTION

Brittle deformation processes in materials with inferior tensile strength, such as rocks,
concrete, ceramics and some glassy polymers, are of continuing interest for practitioners
and theorists alike. In a great majority of cases the inelastic deformation of these materials
is, at room temperature, attributable to microcracking. Some of the early continuum
damage theories made an attempt to model the macro response of brittle processes modi
fying existing plasticity theory. However, the constraints which are placed by microcracks
on the displacement field are radically different from those imposed by crystalline slips. The
difference between brittle and ductile deformation is further emphasized by the fact that
the microcrack growth in a fundamental manner depends on the sign of normal stresses. It
is, therefore, not surprising that the plasticity based phenomenological models were not
particularly successful in replicating salient aspects of the brittle deformation caused by
nucleation and growth of a large number of microcracks.

The rapid development of the continuum damage mechanics in the last two decades
produced various contrasting and even contradictory phenomenological models. Using
clever artifices various authors suggested a host of different mathematical representations
for the damage (internal, hidden) variable. The list runs from scalars (Kachanov, 1958;
Lemaitre and Chaboche, 1978; Lemaitre, 1987; etc.), axial vectors (Davison and Stevens,
1973; Krajcinovicand Fonseka, 1981 ; Talreja, 1985; etc.), second order tensors (Vakulenko
and Kachanov, 1971; Dragon and Mroz, 1979; Kachanov, 1980, 1992; Cordebois and
Sidoroff, 1982; Murakami, 1988; Karihaloo and Fu, 1989; etc.), fourth order tensors
(Chaboche, 1982; Simo and Ju, 1987; Chow and Wang, 1988; Krajcinovic, 1989; Lubarda
and Krajcinovic, 1993; etc.), to a series containing all even order tensors (Qnat and Leckie,
1988).

The primary objective of this paper is to examine the relationship between a given,
experimentally determined, distribution of cracks and the scalar, second order and fourth
order tensor damage parameters. The experimentally measured microcrack densities in
planes with different inclinations are typically represented in form of the rosette histogram.
This rosette histogram is subsequently approximated by a distribution function defined on
a unit sphere and centered in a material point. This distribution function can be further
expanded into a series of spherical functions containing dyadic products of unit vectors and
the Kronecker delta tensor. The ensuing series is typically truncated at a desired tensorial
rank of these dyadic products. In this sense each of the above mentioned damage repre
sentations is an approximation which mayor may not be sufficiently accurate in each
particular case. The objective of this study is to present an algorithm for the derivation ofthe
damage parameters and to examine their ability to approximate the microcrack distribution
function in several important cases. A common feature that occurs in many cases, when
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either second or fourth order damage tensors are utilized to approximate the actual crack
distribution, are the regions of negative crack density.

2. DAMAGE TENSORS AND THE CRACK DENSITY DISTRIBUTION

Consider a solid specimen containing a certain distribution ofmicrocracks accumulated
during a specific loading program from some initial state. Various damage variables were
introduced in the literature to adequately represent the degraded state of the material. If
the current crack pattern in the representative volume element is such that cracks are
uniformly distributed in all planes, regardless of their orientation, a scalar damage variable
becomes a natural choice. The corresponding distribution of damage is referred to as
isotropic. If cracks are nonuniformly distributed over differently oriented planes, the dam
age distribution and correspondingly the material response are anisotropic. A distribution
function p(n) (defined on a unit sphere) must in this case be introduced to define the
directional dependence of the crack density. This function can be expanded in a Fourier
type series of certain families of spherical functions (Kanatani, 1984; Onat and Leckie,
1988), containing dyadic products of the unit vector and the Kronecker delta tensor. In
addition to the scalar (isotropic) term, the second, fourth and higher even order symmetric
tensors appear in this representation. Therefore, the accurate analytical description of
damage by even higher order tensors is a complicated task, which has generated a lot of
controversy in the last two decades. The following derivation in Section 2 is based on more
general development, presented by Kanatani (1984).

2.1. Scalar damage variable
If the crack distribution is isotropic, the crack density does not depend on the orien

tation of the normal n to the plane through a material point, i.e. :

p(n) = p. (1)

Expression (1) can also be used to approximate a nearly isotropic distribution, in which
case p(n) is not a constant, but varies weakly with the orientation of the unit vector n. The
value of the average crack density p is then obtained by integrating eqn (1) over all directions
spanning the entire solid angle 0 = 47t

f p(n) dO = 47tp.
4n

From eqn (2) the average crack density is:

where

Po =1p(n) dO,
4n

(2)

(3)

(4)

is the density of all cracks within a representative unit volume. Consequently, the damage
is characterized by a single scalar parameter Po, which does not change the existing sym
metries of the original matrix. As a result of its simplicity, the scalar damage variable was
extensively utilized in the literature (Lemaitre, 1987, 1992).

2.2. Second order damage tensor
In a general case of loading of initially anisotropic rocks the planes containing extreme

densities of damage are not mutually perpendicular. Consequently, both the damage itself
and its effect on the material effective stiffness are anisotropic. However, in the case of
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initially isotropic materials subjected to proportional loading, the density of damage is
maximum in the plane perpendicular to the largest principal stress, and minimum in the
plane normal to the minimum principal stress. To study this case of damage distribution,
it seems reasonable to approximate its density distribution by an oval curve (Fig. I). This
class of damage distribution can be approximated adequately by a second order tensor. If
Pi; denotes the components of the second order crack density tensor, the density of cracks
embedded in the planes with a normal n is defined by the expression:

(5)

depicted by the oval shape of Fig. 1. Integrating eqn (5) over the entire solid angle, and
using:

(6)

where bij denotes the Kronecker delta tensor, it follows that the first invariant of the second
order crack density tensor is :

(7)

The summation convention is used for the repeated indices, and Po is the total crack
density, defined by eqn (4).

Multiplying eqn (5) with n;nj, integrating over all directions and using:

(8)

it follows that:

(9)

In eqn (8)

(10)

Substituting eqn (7) into eqn (9), the crack density tensor can be expressed as:

(11)

The symmetric second order tensor:

Fig. I. An oval shape corresponding to the second order tensor description of the crack density
distribution.
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(12)

on the right hand side of eqn (11) is referred to as the damage tensor. In view of eqn (11),
the second order tensor approximation of the crack density distribution (5) can be rewritten
as:

(13)

It is instructive to rewrite eqn (13) using the deviatoric part of the damage tensor Dij,
defined as:

(14)

where (n;nY = n;nj-10;i is the deviatoric part of the tensor n;nj • Using eqns (11) and (14)
the deviatoric part of the second order crack density tensor is :

(15)

Hence, eqns (5) and (13) can be rewritten as:

(16)

The first term on the right hand side of eqn (16) represents the isotropic damage,
defined by a single scalar Po. The second term in eqn (16) represents the second order tensor
approximation of the deviation of the crack distribution from its average value.

In the case of two dimensional analysis, the density of all cracks within a unit area is:

Po = f p(n) de,
2"

while the counterparts of eqns (6) and (8) are:

(17)

(18)

(19)

Consequently, the second order approximation of the crack density distribution
becomes:

(20)

where the second order damage tensor Dij is given by:
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(21)

Equation (20) can be rewritten in terms of the deviatoric part of the damage tensor
D;i = Di/- !PObii as:

(22)

Again, the last term on the right hand side of eqn (22) represents the deviation from
the isotropic damage.

2.3. Fourth order damage tensor
Experimental observations of microcracks in different materials, subjected to a variety

of conditions, abound in the existing literature. In general, microcracks are embedded in
planes perpendicular to the maximum principal stress. For example, in a material such as
rock (Hallbauer et al., 1973; Zheng et al., 1991) subjected to uniaxial compression, the
angles subtended by microcrack planes and maximum normal stress are distributed within
a range of ± (to-1St. The range of angles can be much larger in the case of internal
pressures generated by expansive chemical reactions, corrosion, internal heat sources, etc.
Higher order tensor variables are, therefore, often needed to improve the accuracy of the
approximate (smooth) representation of the complicated crack distribution, generated in
the course of arbitrary load programs. The fourth order tensor approximation of the crack
density distribution is defined as:

(23)

where PUkl are the components of the fourth order crack density tensor. Integrating eqn
(23) over all directions n and using eqn (8), it follows that:

(24)

The symmetry properties of the crack density tensor, glVlng Piijj = Pi/U = pijji' are
utilized in derivation of eqn (24). Furthermore, it can be shown that:

(25)

where

(26)

The tensor [Ukl in eqn (26) is defined in eqn (9). Multiplying eqn (23) by n,np and
integrating the product over all directions, leads to:

(27)

It can be similarly shown that:

$AS 3O:20·J



2864

where:

V. A. LUBARDA and D. KRAJCINOVIC

(28)

Hence, multiplying eqn (23) by n"npnynJ, and integrating the product over the entire
solid angle, the fourth order crack density tensor is derived in the following form:

315 ( 2 po)
PUkt = 32n DUki - 3AUki+ 2T [Ukt . (30)

The fourth order tensor Aijkl in eqn (30) is a sum of the products of the Kronecker
delta tensor bii and the second order damage tensor Du, defined in eqn (12), and is given
by:

(31)

The fourth order damage tensor Diikt , appearing in eqn (30), is defined by:

(32)

Clearly, any contraction of two indices reduces eqn (32) to the second order damage
tensor eqn (12), i.e. DUkk = Dij • Substitution of eqn (30) into eqn (23) leads to the following
representation of the crack density distribution:

(33)

It is instructive to rewrite eqn (33) in terms of the deviatoric parts of the damage tensors.
Since the deviatoric part of the product:

is defined so that any contraction of its indices gives the zero tensor, it follows that:

(35)

Furtll~rmore, the deviatoric part of the fourth order crack density tensor is :

Hence, in view of eqns (30) and (35),

, 315,
Pijkl = 32n Dijkl .

Introducing eqns (34) and (36) into eqn (23) leads to:

(37)
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(38)

(39)

substitution of eqns (24), (37) and (39) into eqn (38) provides an alternate form of the
expression (33) for the crack density distribution:

(40)

The first two terms on the right hand side of eqn (40) are identical to the right hand
side ofthe second order approximation, given by expression (16). The last term is, therefore,
the refinement associated with the fourth order approximation. Direct comparison between
the second and fourth order approximations does not exist when the representations (13)
and (33) are utilized. In Kanatani's (1984) paper the various even order damage tensors
Dij... are referred to as the fabric tensors of the first kind. The crack density tensors Pij.. are
(within the multiplier of 41t) referred to as the fabric tensors of the second kind. The
deviatoric parts of the damage tensors D;j... are referred to as the fabric tensors of the third
kind. More general expressions, involving higher even order tensors, are also available
in Kanatani (1984). The related work by Onat and Leckie (1988) contains additional
informations related to the representation of damage by even order tensors.

The two dimensional analysis counterparts of the three dimensional expressions (25),
(28), (32), (33), (35) and (40), are:

(41)

(42)

(43)

(44)

(45)

(46)

Again, the last term on the right hand side of eqn (46) is the refinement of the
approximation (22), attributable to the increase in the tensor order.

3. SOME TYPICAL THREE DIMENSIONAL CRACK DISTRIBUTIONS

3.1. Planar crack distribution
Consider a family of parallel cracks having identical normal m = {cos 4>0 cos 00,

cos 4>0 sin 00, sin 4>0}, where 4>0 and 00are the spherical angles defining the direction of m.
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With n = {cos I'/J cos e, cos I'/J sin e, sin I'/J} denoting an arbitrary direction, the symmetric
form of the crack density distribution is:

Po
p(n) = 2 [15(n-m) +15(n+m)]. (47)

This crack configuration is typical of specimens subjected to uniaxial tension. In eqn
(47), Po is the density of all cracks in a unit volume, and 15 is the Dirac delta function.
Substituting eqn (47) into eqn (12) the second order damage tensor becomes:

(48)

This representation of the damage tensor was extensively utilized in literature (Vaku
lenko and Kachanov, 1971 ; Kachanov, 1980; Kachanov 1992). The corresponding second
order, continuous approximation of the crack density distribution is derived substituting
eqn (48) into eqn (13):

where (0) denotes the scalar product. For example, if m; = 15;3, eqn (49) becomes:

3po
p(l'/J) = 16n(3-5cos21'/J).

The expression (50) can be rewritten as:

(49)

(50)

(51 )

which corresponds to the crack density representation (16). The first term on the right hand
side of eqn (51), i.e. po/4n, is the scalar measure of the isotropic approximation of the
crack density distribution (47), while the second term represents its second order tensor
approximation of the deviation from the isotropy.

The fourth order damage tensor is derived substituting eqn (47) into eqn (32) :

(52)

Comparing eqn (52) with eqn (48), the relationship between the second and fourth
order damage tensors is :

(53)

The fourth order continuous approximation of the crack density distribution (47), is
obtained substituting eqns (48) and (52) into eqn (33). This gives:

315po 4 105po 2 15po
p(n) =--(mon) ---(mon) +-.

32n 16n 32n

For mi = 15;3, eqn (54) reduces to:

(54)
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15po
p(<j:J) = 256n (15 - 28 cos 2<j:J+ 21 cos 4<j:J).

The expression (55) can be rewritten as:
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(55)

(<j:J) = Po + 5po (1
p 4n 16n

9po
3cos 2<j:J) + 256n (9 20 cos 2<j:J +35 cos 4<j:J), (56)

which corresponds to the representation (40), of the previous section. The last term on the
right hand side of eqn (56) is the fourth order refinement relative to the second order
approximation (51).

The graphical representations ofthe second and fourth order approximate distributions
(50) and (55), or (51) and (56), are depicted in Fig. 2. Both distributions have in common
the emergence of the negative crack density over a part of the range. In the corresponding
regions, the actual cracks are replaced by the stiffening-rigid laminae. These rigid elements
are referred to in the literature as negative cracks or anticracks (Dundurs and Markenscoff,
1989). The emergence of negative crack densities during approximations of discontinuous,
narrow band width distributions of cracks by continuous distributions provided by tensors
should have been expected. Tensorial approximations (50) and (55), of a delta function
imply existence of damage at angles other than <j:J = nl2 and <j:J = 3n12. Consequently,
negative crack densities must be present to compensate for this nonexisting damage. Notice

Fig. 2. Second and fourth order tensor approximations ofa planar crack distribution. Crack density
values are proportional to average crack density. Regions of negative crack density are labeled by

negative sign.
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that within the second order representation (51), the maximum positive crack density is
equal to 6po/4rc, i.e. it is six times greater than the uniform isotropic approximation. The
maximum positive crack density of the fourth order representation (56) is 15po/4rc, i.e. 2.5
times greater than that of the second order representation. For example, according to the
second order tensor representation only 7.3% of all cracks are located within the range of
( - 10°, 10°) from the vertical axis. According to the fourth order tensor approximation
17.7% of all cracks are contained within the same range. A closer approximation of the
exact (delta) distribution will require introduction of even higher order tensors. The fact
that the second order representation predicts more than twice reduced crack density in
horizontal planes may have serious consequences on the estimates of effective stiffnesses,
onset of localizations, etc. The maximum negative crack density, predicted by eqn (56),
occurs in two intersecting families of planes whose normal is defined by cos 2¢ = 1/3,
so that ¢ = 35.3° and ¢ = 144.7°. The corresponding crack density is of the magnitude
2.5po/4n.

3.2. Cylindrical crack distribution
Consider next the system of cracks embedded uniformly in planes parallel to the axis

X3 of the coordinate system Xi (i = 1, 2, 3). This case occurs in uniaxial compression of
cylindrical specimens. The normal to an arbitrary crack plane is defined as m = {cos e,
sin e, O}. This crack distribution is represented by:

Po
p(n) = 2n 8(¢), (57)

where 8 is the Dirac delta function, and n = {cos ¢ cos e, cos ¢ sin e, sin ¢} is the unit vector
defining an arbitrary direction. The scalar multiplier po/2n is introduced so that the total
crack density per unit volume is:

1p(n) dQ = Po·
4n

(58)

The second order damage tensor is obtained by substituting eqn (57) into eqn (12) and
performing requisite integration:

(59)

The corresponding second order tensor approximation of the crack density distribution
(57) follows by inserting eqn (59) into eqn (13):

3po
p(¢) = 32n (1 +5cos2¢).

This expression can also be cast into the form :

(60)

(61)

which corresponds to the representation (16) of the previous section. Clearly, the second
term on the right hand side of eqn (61) is the second order refinement of the scalar
approximation po/4n.

The fourth order damage tensor is obtained by substituting eqn (57) into eqn (32):
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(62)

rn

mimjmkmldO = : [(bij-bn bj 3)(bkl- bk3 bI3)

+ (c5jk - c5j3bd(c5i/- c5i3c513) + (c5ki - c5k 3c5; 3)(bp - c5j3 c513)], (63)

the relationship between the second and fourth order damage tensors is:

I
D;jkl = 2 (DijDkl+DikDjl+Di/Djk)' (64)

Po

The fourth order continuous crack density approximation is derived by substituting
eqns (64) and (59) into eqn (33) :

15po
p(</» = 204877: (29 + 28 cos 2</> + 63 cos 4</». (65)

The above expression can be rewritten as:

Po 5po 27po
p(</» = 477: - 3277: (1-3cos2</»+ 104877: (9-20cos 2</>+35 cos 4</», (66)

which is an equivalent representation corresponding to expression (40). The last term on
the right hand side of eqn (66) is the fourth order refinement of the second order crack
density approximation, given by eqn (61).

The graphs corresponding to distributions (60) and (65), or (61) and (66), are shown
in Fig. 3. Maximum crack density according to eqn (60) is 2.25 and according to eqn (65)

Fig. 3. Second and fourth order tensor approximations of a cylindrical crack distribution. Regions
of negative crack density are labeled by negative sign.
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3.52 times larger than the isotropic~average value po/4n. Within ± 10° relative to horizontal
axis there are 38.4% of all cracks according to eqn (60), and 58.2% according to eqn (65).
Closer agreement with the distribution (57) can be achieved with further increase in the
order of tensor approximation. In the case of the second order approximation (Fig. 3a),
the region of negative crack density (with the maximum magnitude of 1.5po/4n) is "ortho
gonal" to the dominating region of positive crack density. The fourth order approximation
features two regions of negative crack density, which are at about 45° relative to two
"orthogonal" regions of positive cracks. The maximum negative crack density is of the
magnitude of 1.04po/4n, and occurs at the angle defined by cos 1; = ±2/3 (i.e. 1; = 48.2'
and 131.8").

4. SOME TYPICAL TWO-DIMENSIONAL CRACK DISTRIBUTIONS

4.1. Parallel cracks
Consider a family of parallel cracks with the area density Po. Let m = {cos 00, sinOo}

be the unit normal to each crack, and let n = {cos 0, sin O} be a unit vector defining an
arbitrary direction in the plane of cracks. This crack distribution, written in a symmetric
form, is:

(67)

where (j is the Dirac delta function. Substitution of eqn (67) into the expression for the
second order damage tensor eqn (21) and integrating gives:

(68)

The corresponding second order tensor approximation of eqn (67) is derived by
substituting eqn (68) into eqn (20) :

Po 2p(n) = 2~ [4(m' n) - I],

or, in explicit form as a function of angle 0,

(69)

p(O)
Po Po
2

+ -cos2(8-0o)·
n n

(70)

The first term on the right hand side of eqn (70), i.e. po/2n, is the scalar approximation
of the crack density distribution (67), while the second term represents its second order
refinement. Maximum positive crack density occurs at angle 8 = 80 and is three times
greater than the average value po/2n, while the maximum negative density occurs at angle
8 = 8o+n/2 and is of magnitude equal to the average crack density.

The fourth order damage tensor is obtained by introducing eqn (67) into eqn (43):

Substitution of eqns (68) and (71) into eqn (44) now leads to:

8po 4 6po 0 Po
p(n) = ~-(m'n) - -(m'n)"+-,

n n 2n

that is,

(71 )

(72)
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p(e) = 2Po + POcos2(e-eo)+ POcos4(e-eo).
n n n

2871

(73)

The last term on the right hand side of eqn (73) is the fourth order refinement of the
second order approximation (70). The graphical representations of distributions (70) and
(73) show analogous features to those seen in Fig. 2. The maximum positive crack density
according to eqn (73) is five times greater than the average crack density. The maximum
negative crack density occurs at the angle defined by cos2(e-eo) = -1/4, and is of the
magnitude 1.24po/2n. According to the second order tensor approximation (70) only 16.4%
of all cracks are contained within the planes whose normals are in the range of ± 10° about
the angle e = eo. The fourth order tensor approximation predicts that 26.6% of all cracks
are within this range.

4.2. Two orthogonal systems ofcracks
Consider next two mutually orthogonal families of cracks with the respective normals

m = {cos eo, sin eo} and lit = { - sin eo, cos eo}, and crack densities Pand p = Po- P, where
Po is the total crack density in a unit area. Assume also that p = rp, so that:

I
P = l+rPo, (74)

This crack distribution, common to biaxial tension, written in a symmetric form, is:

(75)

The second order damage tensor is obtained by substituting eqn (75) into eqn (21) :

(76)

(77)

The second order continuous approximation of the crack distribution (75) is derived
by substituting eqn (77) into eqn (20) :

that is,

l-r2po 2 3r-1 Po
p(n) =--(mon) +---,

I +r n I +r 2n

Po I-r Po
p(e) = -2 + -I- -cos2(e-eo).

n +r n

(78)

(79)

This expression also directly follows by superimposing the two distributions in (70),
representing two families of parallel cracks, considered in the previous subsection. Indeed,
expression (70) is recovered from eqn (79) by letting r = O. If r = I, from eqn (79) it follows
that:
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Po
p(8)=2n' (80)

Thus, according to the second order tensor approximation, two orthogonal crack
families with equal crack densities (of Po/2 each), are equipolent to the isotropic crack
distribution.

The fourth order damage tensor is derived by substituting eqn (75) into eqn (43) :

Introducing eqn (81) into eqn (44), the expression for the crack density becomes:

p(n) = 8PO(m'n)4_ 3+5r 2PO(m'n)2+ 1+5r Po,
n 1+r n 1+r 2n

that is,

Po l-r Po Po
p(8) = -2 + -1- -cos2(8-8o)+ -cos4(8-8o).

n +r n n

(81 )

(82)

(83)

This expression, again, directly follows from the superposition of the two expressions
in eqn (73), recovered from eqn (83) when r = O. The last term on the right hand side of
eqn (83) is the fourth order refinement of the second order approximation (79).

If r = I, eqn (83) leads to the corresponding fourth order distribution:

Po Po
p(8) = -2 + -cos4(8-8o),

n n
(84)

so that the fourth order tensor approximation makes a distinction between the isotropic
and the considered distribution ofcracks. The plots of distributions (80) and (84), approxi
mating two orthogonal crack families of equal densities, are shown in Fig. 4. The second
order approximation coincides with the scalar approximation, and is geometrically rep
resented by a circle. The fourth order approximation contains two minor regions of negative
crack density, at 45° relative to dominating regions of positive cracks. The maximum crack
density, according to the fourth order tensor approximation, is three times larger than the
average crack density (scalar and second order tensor approximation).

The approximate crack density distribution does not always contain regions of negative
crack density. For example, the presence of these regions in the second order approximation
(79) depends on the value of the parameter r. For! :::; r :::; 3, the region of negative crack

0.5

0.5

Fig. 4. Second and fourth order tensor approximations of two orthogonal systems of cracks with
equal crack densities.
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(a)

(b)

Fig. 5. Second order tensor approximation of two orthogonal systems of cracks (a) regions of
negative crack density do not occur if one crack density is two times larger than the other, (b)

distribution corresponding to the limiting ratio between the crack densities, r = 3.

2873

density is absent. The case corresponding to the value r = 2 is shown in Fig. 5a. The limiting
case corresponding to r = 3, at the threshold of the presence of the negative cracks, is
shown in Fig. 5b. The other limiting case, corresponding to r = 1/3, is obtained from the
graph in Fig. 5b through 90° rotation.

4.3. Two nonorthogonal systems ofcracks
If the two crack families subtend an arbitrary angle IX ("monoclinic" crack distribution),

the crack density is:

(85)

This case can occur in the case of nonproportional loading, using a procedure anal
ogous to one described in the previous subsection, or superimposing the results derived for
a single family of parallel cracks, expressions (70) and (73), the second and fourth order
continuous approximations of eqn (85) are derived in the form:

Po I Po r Po
p«()) = - + - -cos2«()-()o)+ - -cos2«()-()o-IX).

2n 1+r n I +r n

Po 1 Po 1 Po
p«()) = -2 + -1- -cos2«()-()o)+ -1- -cos4«()-()o)

n +rn +rn

(86)

Clearly, if r = 0 eqns (86) and (87) reduce to eqns (70) and (73). If IX = n/2, the results
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Fig. 6. Second and fourth order tensor approximations of two nonorthogonal systems of cracks.
Angle between the crack planes is rrj4, and the density of one crack system is two times larger than

the other.

eqns (79) and (83) for two orthogonal crack families are recovered. Figure 6 displays the
graphs of the approximate crack density representations (86) and (87), for the case when
two crack families subtend the angle ct = n/4, and the density of one family is twice as large
as the density of the other, i.e. r = 2. The angle (Jo is taken to be 3n/8, such that two families
are symmetrically positioned with respect to the vertical axis. Note that the graph in Fig.
6a, obtained from the nonorthogonal crack family solution (86), can also be obtained from
the orthogonal crack family solution (79), by adjusting its densities and orientations as the
eigenvalues and eigendirections of the second order damage tensor:

(88)

In eqn (88), m= {cos(Jo, sin(Jo} and m= {cos «(Jo+ct), sin «(Jo+ct)}. The planes of
maximum crack densities of the actual distribution naturally differ from these principal
planes of the second order tensor. Hence, in the case of the monoclinic crack distribution
the second order tensor approximation becomes less adequate, both in terms of principal
densities and their orientations.

4.4 Rosette histogram
Consider finally the crack distribution measured in actual tests. For example, Fig. 7

shows a rosette histogram deduced from the measurements of microcrack orientation and
density in quartzite specimen tested in triaxial compression machine (Hallbauer et al.,
1973). The majority of cracks were oriented within ± 10° to the longitudinal axis of the
specimen. The experimental data is approximately represented by a rosette histogram in
which cracks are distributed between the angles of 70-95°. The crack densities in five
subregions, each spanning the angle of 5°, are 1.8, 7.2, 10.8, 14.4 and 1.8 times the average
crack density po/2n. The rosette histogram has a central symmetry, so that the crack density
in an arbitrary direction n is equal to that in the direction - n.

The corresponding second order damage tensor is obtained by substituting the crack
distribution p(n) from the rosette histogram in Fig. 7 into the expression (21). Performing
requisite integration, it follows that D II = 0.385, D 22 = 5.897 and D 12 = D 21 0.695 times
the average crack density po/2n. Substituting these components into eqn (20), the second
order tensor approximation of the rosette histogram crack distribution is:
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Fig. 7. Rosette histogram deduced from the measurements of crack distribution in triaxial com
pression of quartzite specimen (Hallbauer el al., 1973).

p(8) = ~;(l-1.755COS28+0.442sin28).
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(89)

The graph of the distribution (89) is shown in Fig. 8a. The maximum positive crack
density is 2.81 times the average crack density, and occurs at angle 8 = 83°. The maximum
negative crack density is 0.81 times the average crack density, and occurs at angle 8 = - 7°.

To derive the fourth order tensor approximation of the rosette histogram crack dis
tribution, the components of the fourth order damage tensor (43) are first evaluated. It
follows that D IIII = 0.263, D 2222 = 5.775, D I122 = 0.122, D II12 = 0.026 and D U21 = 0.669
times the average crack density po/2n. The symmetry properties define the values of
other components: D I'22 = DUll = D I221 = D 2112, D II12 = D I121 = D I211 = D2111 and
D U21 = DUI2 = D 2I22 = D 1222' Substitution into eqn (44), therefore, gives:

(a) (b)
Fig. 8. (a) Second, and (b) fourth order tensor approximations of the rosette histogram from Fig. 7.
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p(O) = ~; (1-1.755 cos 20+0.442 sin 20-0.086cos 40-0.820 sin 40). (90)

The first three terms in the right hand side of eqn (90) are exactly equal to those of the
second order tensor approximation (89), while the last two terms represent the refinement
of the continuous approximation due to the fourth order damage tensor. The graph of the
distribution (90) is depicted in Fig. 8b. According to this distribution, 42% of all cracks
are distributed within the angle range of 70-95° and 250-275° (the range of nonzero crack
distribution of the rosette histogram in Fig. 7). The maximum positive crack density is 3.43
times the average crack density, and occurs at the angle 0 = 72°. The maximum negative
crack density is of the magnitude 1.09 times the average crack density, and occurs at the
angle 0 = 11°. Much better reproduction of the rosette histogram crack distribution is
evident, both with respect to the orientation and the density of cracks.

5. CONCLUDING REMARKS

Formulation of continuum damage theories requires approximation of discontinuous
and often nondeterministic distribution of cracks by continuous functions computed from
a sequence of even order tensors. Even though approximations by even order tensors were
extensively used in the past, their accuracy was never seriously examined. The main objective
of this study is to establish a relationship between the experimental measurements (rosette
histograms) of crack density distribution and the continuous representations provided by
scalar, second order tensor and fourth order tensor damage parameters. The accomplish
ment of this task will provide the means to estimate the accuracy of various tensorial
representations.

The analysis of several frequently encountered crack distributions, corresponding to
uniaxial and biaxial stress fields, clearly indicates the shortcomings of the scalar and second
order tensor approximations. In all examined cases the fourth order tensor provided
superior, if not always satisfactory, estimates of crack distributions. This was especially
obvious for the monoclinic crack distribution. A common feature that arises in many cases,
when either second or fourth order damage tensors are utilized to obtain the approximate
continuous distribution, is the occurrence of regions with negative crack density ("anti
crack" regions).

All examined approximations were not entirely satisfactory in dealing with crack
systems distributed within a small band of orientations. This is, naturally of some concern
since the macro-failure, according to the percolation theory (Krajcinovic et al., 1992),
strongly depends on the density and orientation of cracks. Moreover, the second order
tensor representation does not make a distinction between the random and orthogonal
distribution of cracks. However, as shown in Balberg (1985), the critical crack densities in
these two cases are not identical.

It should also be pointed out that in the literature the damage tensor is often introduced
phenomenologically, through its relationship with the so called effective stress operator (Iu,
1989; Chaboche, 1992). Actual analysis of the relation between suggested representations
and considered crack distributions was, however, not attempted. As a result, the existence
of "anticracks" was never contemplated. More importantly, the influence of the "anti
cracks" on the macro response was not discussed in the existing literature, providing an
important subject for future research.
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